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1. INTRODUCTION

A stationary first-order autoregressive process with exponential marginal
distributions was defined in Gaver and lewis (Ref. 1). The process is defined
by the following recursion:

xn-px1+IE where 0 ¢ p<1 (1)

and I = O with probability p, I = 1 with probability 1 - p, and {En} is an
independent identically distributed (i.i.d.) sequence of exponential random
variables with rate parameter A. The {In} sequence 1s also {.1.d. and is
independent of {E }.

The sequence is a special case of the EARMA(1l,1) sequence studied in
Jacobs and Lewis (Ref. 2). Properties of the sequence are given in Gaver and
Lewis (Ref. 1), Jacobs and Lewis (Ref. 2), and Chernick (Ref. 3). A relation-
ship between the sequence (which is denoted by EAR(1)) and another Markovian
exponential process (Tavares (Ref. 4)) is pointed out in Chernick, et. al.
(Ref, 5).

In section 5 of Gaver and Lewis (Ref, 1) it is observed that when
p > 0 it is possible to determine p exactly. If we let Zn - n+l/xn’ we see
that zn- p when I is zero. Because P(I“ = 0)=p > 0, In will be zero infi-
nitely often. By waiting for the first repeated value of Z, We find
that p is equal to this repeated value. The quantity p will also be the
ninigua value for Z, because

) SN
2 = o+ Tl _mtl

n xn

(2)

and > 0 for each n.

We note that Z, has a continuous distribution when I+ 1 and has probability
p concentrated at o So the only value that will repeat in the sequence

is p. In practice other values will have a small probability of occurrence
due to the discreteness of the random number generator.
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Gaver and Lewis (Ref. 1) point out that if we use the stopping time
T = ain { n:Z repeats its previous minimum value}

then T is the sum of two geometric random variables plus one. So T has
expectation 1 + (2/p) and variance 2(1-9)/92. Clearly 1f p is not too small
the expected value of T and its variance will be small. In fact, it is easy
to determine the exact probability distribution for T,

P(T=n) = (n-2) p2 (1-p)">  for n >3 (3)
. = 0 . for n <3.
From Eq. (3) it is easy to determine that
B(Ta) = (14a=3) )(1-0)"">  for n > %)
=] for n €3.

So as long as p is not very small it is unlikely that T will be very large.
On the other hand, if there is a possibility that p 18 small and one caanot
afford to take more than, say, n, samples, we would recommend using the
stopping time T' where

T' L dﬂ(r, no).
When T >ng the logical choice for an estimate of p is
feminfz :n<T}]

The estimator P is greater than or equal to p and the bias will be small for

reasonably large n.
Lawrance and Lewis (Ref. 6) have generalized the EARMA model to higher

order autoregressive and moving average terms. In particular, they define the
EAR(p) processes as follows
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® X1 with probability a,
- Xi - °2x1-2 with probability a, + t:1 (5)
o X :
P i-p with probability a P
1
where a, = (1- az) ap = 1.9 aj

L
and 2, -(JEZ aj)(l'azﬂ)' £ =2 o, pl, D 20

for i=1,2, ..., p

and € 1 has the distribution required so that X; has an exponential distribu-
L". tion with parameter A for each_ i. For p > 2 the requirement that such an

! i.1.d. sequence exists imposes additional constraints on the parameters.
Lavrance and Lewis derive the distribution for €
p=2.

1 explicitly only in the case

Gaver and Lewis (Ref. 1) showed that for the EAR(1) process. once p has
been determined through the sequential estimation procedure, the Ei's can be
recovered exactly for 12, Because the sequence { Bn} is 1.1.d. exponential
with the rate parameter A, the usual maximm likelihood estimates for A can be
determined. In section 2 of this report, it is demonstrated that a generali-
gation of the sequential stopping rule can be used to explicitly determine the
a,'s for each 1. Section 3 discloses how a conditional likelihood estimator

i

can be determined for A. For p »2 the non-zero ei'. cannot all be recovered

and hence the generalization of the result for p=1 is not straightforward.
Explicit results are obtained for the case p=2.

.....




2. DETERMINING THE AUTOREGRESSIVE PARAMETERS

Because the required distribution for the {en} sequence always has
positive probability concentrated at zero, it is possible to determine
cl, a2, essy ap by keeping track of the ratios

X X X
T YT 0 T Once the value of X is repeated, that repeated
i-1 -2 i-p i-k
X
value is A The stopping time T is then the smallest n such that xi has
i1-k

been repeated for all k = 1,2, ..., p.

For the case when p = 2, we shall determine the distribution of T, 1its
expectation and variance.

The EAR(2) process of Lawrance and Lewis is given as follows:

with probability 1 -a,

o, xi_2 with probability a,

where r 1

with probability cl/(l +a, -a

1~ %)

0
e, ={E with probability (1 - a,) (1 - a,)/(1 - )

v

) with probability (1 - °2) (al - az)zl{(l + @,
§ - uz)(l - &} 4

and § = (1 + a
parameter ),

Let ‘l'l = main {n: X

, = 8,) 0, and {E,} 18 an i.1.d. exponential sequence with

is the same for two values of i < n}and Tz = min
1-1

X
{n: 1 _ 1e the same for two values of 1 (4 r}. Then let T = max {'rl.‘l'zl.
1-2

Now X, = a,X,_, with probability P, = a,(1 - a,)/(l +a; - a))and X; =

47X .9 with probability P, alczl(l +a - cz).
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Ve consider the stochastic sequence {y,} 121 where y = 0, 1 or 2. The

y4's are independent random variables with l'[y1 =1] = P, 1»[,i -2] - ?,

and P[y‘ =0]=1- P, - P,. Let V be the first time that both 1 and 2 are

repeated. Clearly T = V + |,
Simple combinatorial arguments show that P[V=n+ 1] = P[T = n + 2] =
n-1 n-1 n-1 n-1
an {2 [a-p)" ma-p )"+ [a-2p™ -1 -p - )"} -
n(n - 1) PPy (Py + P)(1 ~ Py - P))™ 2 for n> 4. E(T) = 1 + E(V) and

Var(T) = Var(V). Computations show

2 2 2
I(T) =] +,;-+-’-z'--(r—+—n-

and
2 PP
2 2 2 2 2 2 172
Var(T) = - + - + - +

S AL A I A R T X AT
1 2 1 2 1 2

X 2

321’le ) ”1'2

& N 3
(Pl + Pz) (Pl + Pz)

Por e - 0.5 and a, = 0.4, B(T) = 13.86, vhereas for the EAR(1l) process
with o = 0,5 E(T) = S, so E(T) incresses significantly as the order of the
process incresses. In principle the distribution of T can be determined for
any order p but apparently the dictfﬂnt:lon becomes more complicated. Clearly
E(T) srows as the order is increased and probahbly Var(T) also grows as the
order is increased. For higher or'der models 1t may bs necessary to truncate
the stopping time. However, it is not clear how one would estimate the

c,'- which have not been determined by repetition.

The gamma first order sutoregressive process of Gaver and Lewis (Ref. 1)
(GAR(1)) can be generalized to higher order models in the same way that
Lawrance and Lewis generalized the EAR(1) process. In fact, the GAR(p)
process can be thought of as the sum of k EAR(p) processes when the parameter
k is an integer. It is-obtained in the following way:

Let xnl' xnz. esey xnk be k EAR(p) processes each with the

sams peramesters al, °2' eeey ap, and A, The processes are related in that

Lt
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1£ Xn1 = 8 X (1)1 * En1 then Kp = & X192 + Sqz0 ooes
x“p - “tx(n-l)p + cnp forr =1, 2, +ee, po The sequences

{tnl}. {tnz}, coes {enp} are independent. Define

ly‘
S = A X ..
n =] ni

Then S, is a GAR(p) process and just as in Eq. (5) we have

.
ﬂ
. al s:l-l with probability ‘1
' 8y = |%2 812 with probability a,|* °1
':. 4 ° b r
& : .
- with bilie
J‘: | | % %ip probabllity & |
E' - where
& P L .
s a; = (1~ uz), a, = n aj, a = n “_1 (1 - al.+l) v (6)
' _ J=2 =2
; E 2, seeey P - l, 1 > ai 0 for i = l, 2, eeey P
' and
F
}
| 2 e - A € .
; i =1 13

:-':: The deteraination of the a"s for the GAR(p) process is the same as for
the FAR(p) process. Because the stopping time T depends only on the sequence

. {y’}" vhen p = 2, the stopping time for the GAR(2) process has the same dis-
= i=]

tribution as for the EAR(2) process.
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Do 3. ESTIMATION OF LAMBDA

- Once the c". have been determined for i=1,2, ..., p va can compute the

) following residuals: Tip = Xg —o1X4 gy Typ = X5 = @Ky g oo Tip = X -
-

apxj_p. When ryy = 0 for some j this indicates that € = 0 and Xy = ajx,_j.
F We can then determine a conditional likelihood for the residuals given the set
- of €4 which are zero. For those { for which Tyy *# 0 for any §, €; is greater
- than zero.

We shall now consider the case p = 2 for simplicity.
{1: 41 >0 and Ty2 > 0], Iz = [{:
[1: ril > 0 and ry2 < 0] and let

ut!l.
1"1(0.1“!"2)0] .MI"

3
I=01I..
g1 J

Let k be the number of elements in I. When 1el,, € = ryy > O, and when iclj,

€ = rq) > 0. If uxl we do not know whether € = ry) OF € = ryqe

For iclz
-Xrn
the conditional likelihood is Ae

A4
and for 1813 it is le

+ When 1e1,
we 1ly know that €y > 0 and is either rg) OF Type

Consequently, the conditional likelihood is

-Ar -Ar
A [(l - az)e 11 + a,e 12].

Because the Ci'l are independent given that they are not zero, the conditional
1ikelihood L, is given by

11
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Maximizing L, yields a conditional maximum likelihood estimator and gener-
alizes the method of Gaver and Lewis. In general, for the pth order process
there will be 2P-1 sets I,
than gzero or greater than zero for each i and t but rye cannot be less than
gero for 1 fixed and each t. C

to consider since it is possible for ry, to be less

Let

and k be the number of elements in I. Then the conditional likelihood is

K ] -Arij P -lrij
L. =12 1311 [351 Pyy © i, jE1|Pyy © “ee

-Ar
ip
i.glzp.l e

va
o

The Pij" depend on which r11's are less than zero and in particular Pyy = 0
if rtj 06 - - . o : a L e : B

Another reasonable way to estimate A when p = 2 is obtained by consider-
ing the following equation: . '

AOmE s A can g
[T

, X, = (@, 7,X,_, +a,(l -v) X

_2)‘- e!'for £ = 3,4 000, 0

vhere

F' P(Y, = 0) =a,=1-P (v, = 1) and the sequence {v,} ¢))

is 1,1.4. and independent of X), Xy, eee, X,y

T Because E(¢,) = 1/A and E(y,) = 1 - a,,

L. ' l i n | . 2

. -3 523 {xj -a, - a,) xj-l - a, xj-z}
v

- is an unbiased and consistent estimate for 1/A. Consequently

12
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&f will be a consistent estimator for A.
Eg For the GAR(p) with k known, the conditional likelihood approach could be

employed. The simple approach given in the preceding paragraph can also be
used. E(en) = k/A and so the estimator

Ty
s

gt e
LT . .

n
2
k(n-3)/ j§3 {Sj -, - a,) sj__1 - a Sj_z}

will he a consistent estimator for ).

et it
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4. CONCLUSIONS

fe

For low order EAR or GAR models this sequential parameter estimation

2 procedure provides a satisfactory way of determining the ci's and then

E estimating A, Table 1 shows results of simulating the process for various

' values of o, and a,. The stopping time T is replicated fifty times and the

- sample mean (T), sample variance (82) are compared with their theoretical

b values E(T) and V(T) respectively. Also, the maximum value of 'r('rw‘) is
given for each a and aye Even for small values of the °1'° it may be

possible to use the stopping time because T is unlikely to exceed 500.
Congidering the X;'s to be the interarrival times for a point process, the EAR
process introduces a correlation structure to the time between events and

) - hence generalizes the Poisson process. Generalizations of the Poisson process
L:ﬁ'j are important because they allow for greater flexibility in modelling series

of failure times. These models can then be used to assess the risks
associated with rare catastrophic events such as an accident at a nuclear

! : power plant.
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[! Table 1. Simulation of the FAR(2) Process

o KT) . T v(T) 82 Taax

0.2 0.1 11112 113.66 5865.9  5932.9 356

: 0.2 0.2 51.90 46.36  1096.7 702.8 123
: 0.2 0.3 32.95 34.06  320.5 407.3 85
& 0.2 0.4 24,41 22.58  106.9 195.0 46
gi 0.6 0.1  66.07 68.18 2021.6  2033.5 232
3 0.4 0.2 31.53 29.56  382.6 33.0 85
: 0.4 0.3  20.53 20.30  112.1 163.7 64
2 0.4 0.6 15,63 14,60  36.3 36.7 37
= 0.5 0.1 57.14  61.48  1492.7  1999.5 232
’ 0.5 0.2 27.48 27.96  283.8  342.0 85
0.5 0.3 . 18.05 , 18.80 8.2  140.4 5l

0.5 ..0.4. . 13.88  13.00  26.5  27.1 29
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